z-logo
open-access-imgOpen Access
Smooth Monotone Contribution Games
Author(s) -
Steven A. Matthews
Publication year - 2006
Publication title -
ssrn electronic journal
Language(s) - English
Resource type - Journals
ISSN - 1556-5068
DOI - 10.2139/ssrn.909520
Subject(s) - monotone polygon , mathematics , mathematical economics , geometry
A monotone game is a multistage game in which no player can lower her action in any period below its previous level. A motivation for the monotone games of this paper is dynamic voluntary contribution to a public project. Each player's utility is a strictly concave function of the public good, and quasilinear in the private good. The main result is a description of the limit points of (subgame perfect) equilibrium paths as the period length shrinks. The limiting set of such profiles is equal to the undercore of the underlying static game - the set of profiles that cannot be blocked by a coalition using a smaller profile. A corollary is that the limiting set of achievable profiles does not depend on whether the players can move simultaneously or only in a round-robin fashion. The familiar core is the efficient subset of the undercore; hence, some but not all profiles that are efficient and individually rational can be nearly achieved when the period length is small. As the period length shrinks, any core profile can be achieved in a “twinkling of the eye” - neither real-time gradualism nor inefficiency are necessary.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom