z-logo
open-access-imgOpen Access
Markov Functional Modeling of Equity, Commodity and Other Assets
Author(s) -
Christian Fries
Publication year - 2006
Publication title -
ssrn electronic journal
Language(s) - English
Resource type - Journals
ISSN - 1556-5068
DOI - 10.2139/ssrn.894338
Subject(s) - markov chain , equity (law) , financial economics , economics , econometrics , business , mathematics , statistics , political science , law
In this short note we show how to setup a one dimensional single asset model, e.g. equity model, which calibrates to a full (two dimensional) implied volatility surface. We show that the efficient calibration procedure used in LIBOR Markov functional models may be applied here too. In a addition to the calibration to a full volatility surface the model allows the calibration of the joint asset-interest rate movement (i.e. local interest rates) and forward volatility. The latter allows the calibration of compound or Bermudan options. The Markov functional modeling approach consists of a Markovian driver process x and a mapping functional representing the asset states S(t) as a function of x(t). It was originally developed in the context of interest rate models, see (7). Our approach however is similar to the setup of the hybrid Markov functional model in spot measure, as considered in (5). For equity models it is common to use a deterministic Numéraire, e.g. the bank account with deterministic interest rates. In our approach we will choose the asset itself as Numéraire. This is a subtle, but crucial difference to other approaches considering Markov functional mod- eling. Choosing the asset itself as Numéraire will allow for a very efficient numerically cali- bration procedure. As a consequence interest rates have to be allowed to be stochastic, namely as a functional of x too. The Black-Scholes model with deterministic interest rates is a special case of such a Markov functional model.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom