z-logo
open-access-imgOpen Access
UnFEAR: Unsupervised Feature Extraction Clustering with an Application to Crisis Regimes Classification
Author(s) -
Jorge A. ChanLau,
Ran Wang
Publication year - 2020
Publication title -
ssrn electronic journal
Language(s) - English
Resource type - Journals
ISSN - 1556-5068
DOI - 10.2139/ssrn.3773093
Subject(s) - cluster analysis , pattern recognition (psychology) , artificial intelligence , feature (linguistics) , computer science , data mining , philosophy , linguistics
We introduce unFEAR, Unsupervised Feature Extraction Clustering, to identify economic crisis regimes. Given labeled crisis and non-crisis episodes and the corresponding features values, unFEAR uses unsupervised representation learning and a novel mode contrastive autoencoder to group episodes into time-invariant non-overlapping clusters, each of which could be identified with a different regime. The likelihood that a country may experience an econmic crisis could be set equal to its cluster crisis frequency. Moreover, unFEAR could serve as a first step towards developing cluster-specific crisis prediction models tailored to each crisis regime.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom