z-logo
open-access-imgOpen Access
Optimal Density Forecast Combinations
Author(s) -
Gergely Ganics
Publication year - 2018
Publication title -
ssrn electronic journal
Language(s) - English
Resource type - Journals
ISSN - 1556-5068
DOI - 10.2139/ssrn.3098761
Subject(s) - econometrics , statistics , mathematics , environmental science
How should researchers combine predictive densities to improve their forecasts? I propose consistent estimators of weights which deliver density forecast combinations approximating the true predictive density, conditional on the researcher’s information set. Monte Carlo simulations confi rm that the proposed methods work well for sample sizes of practical interest. In an empirical example of forecasting monthly US industrial production, I demonstrate that the estimator delivers density forecasts which are superior to well-known benchmarks, such as the equal weights scheme. Specifi cally, I show that housing permits had valuable predictive power before and after the Great Recession. Furthermore, stock returns and corporate bond spreads proved to be useful predictors during the recent crisis, suggesting that fi nancial variables help with density forecasting in a highly leveraged economy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom