Power-to-Heat for Renewable Energy Integration: Technologies, Modeling Approaches, and Flexibility Potentials
Author(s) -
Andreas Bloeß,
Wolf-Peter Schill,
Alexander Zerrahn
Publication year - 2017
Publication title -
ssrn electronic journal
Language(s) - English
Resource type - Journals
ISSN - 1556-5068
DOI - 10.2139/ssrn.3028516
Subject(s) - renewable energy , flexibility (engineering) , process engineering , computer science , environmental science , environmental economics , industrial engineering , engineering , economics , electrical engineering , management
Flexibly coupling power and heat sectors may contribute to both renewable energy integration and decarbonization. We present a literature review of modelbased analyses in this field, focusing on residential heating. We compare geographical and temporal research scopes and identify state-of-the-art analytical model formulations, particularly concerning heat pumps and thermal storage. While numerical findings are idiosyncratic to specific assumptions, a synthesis of results generally indicates that power-to-heat technologies can cost-effectively contribute to fossil fuel substitution, renewable integration, and decarbonization. Heat pumps and passive thermal storage emerge as particularly favorable options.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom