z-logo
open-access-imgOpen Access
Forecasting GDP Growth with NIPA Aggregates
Author(s) -
Christian Garciga,
Edward S. Knotek
Publication year - 2017
Publication title -
ssrn electronic journal
Language(s) - English
Resource type - Journals
ISSN - 1556-5068
DOI - 10.2139/ssrn.2973997
Subject(s) - economics , chemistry
Beyond GDP, which is measured using expenditure data, the U.S. national income and product accounts (NIPAs) provide an income-based measure of the economy (gross domestic income, or GDI), a measure that averages GDP and GDI, and various aggregates that include combinations of GDP components. This paper compiles real-time data on a variety of NIPA aggregates and uses these in simple time-series models to construct out-of-sample forecasts for GDP growth. Over short forecast horizons, NIPA aggregates?particularly consumption and GDP less inventories and trade?together with these simple time-series models have historically generated more accurate forecasts than a canonical AR(2) benchmark. This has been especially true during recessions, although we document modest gains during expansions as well.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom