z-logo
open-access-imgOpen Access
Baby Cry Detection in Domestic Environment Using Deep Learning
Author(s) -
Yizhar Lavner,
Rami Cohen,
Dima Ruinskiy,
Hans IJzerman
Publication year - 2016
Publication title -
ssrn electronic journal
Language(s) - English
Resource type - Journals
ISSN - 1556-5068
DOI - 10.2139/ssrn.2877132
Subject(s) - deep learning , computer science , artificial intelligence , psychology , environmental science
Automatic detection of a baby cry in audio signals is an essential step in applications such as remote baby monitoring. It is also important for researchers, who study the relation between baby cry patterns and various health or developmental parameters. In this paper, we propose two machine-learning algorithms for automatic detection of baby cry in audio recordings. The first algorithm is a low-complexity logistic regression classifier, used as a reference. To train this classifier, we extract features such as Mel-frequency cepstrum coefficients, pitch and formants from the recordings. The second algorithm uses a dedicated convolutional neural network (CNN), operating on log Mel-filter bank representation of the recordings. Performance evaluation of the algorithms is carried out using an annotated database containing recordings of babies (0-6 months old) in domestic environments. In addition to baby cry, these recordings contain various types of domestic sounds, such as parents talking and door opening. The CNN classifier is shown to yield considerably better results compared to the logistic regression classifier, demonstrating the power of deep learning when applied to audio processing.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom