z-logo
open-access-imgOpen Access
Measuring Productivity When Technologies are Heterogeneous: A Semi-Parametric Approach for Electricity Generation
Author(s) -
Stefan Seifert
Publication year - 2015
Publication title -
ssrn electronic journal
Language(s) - English
Resource type - Journals
ISSN - 1556-5068
DOI - 10.2139/ssrn.2698067
Subject(s) - productivity , electricity generation , electricity , parametric statistics , environmental science , natural resource economics , econometrics , economics , engineering , macroeconomics , mathematics , statistics , power (physics) , electrical engineering , physics , quantum mechanics
While productivity growth in electricity generation is associated with multiple positive effects from an economic and environmental perspective, measuring it is challenging. This paper proposes a framework to estimate and decompose productivity growth for a sector characterized by multiple technologies. Using a metafrontier Malmquist decomposition and frontier estimation based on stochastic non-smooth envelopment of data (StoNED) allows for productivity estimation with few microeconomic assumptions. Additionally, evaluation of productivity at representative hypothetical units permits distribution-free analysis for the whole distribution of power plant sizes. The proposed framework is used to analyze a unique and rich dataset of coal, lignite, gas, and biomass-fired generators operating in Germany from 2003 to 2010. The results indicate stagnating productivity for the sector as a whole, technical progress for biomass plants, and very high productivity for gas-fired plants.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom