Specification Curve: Descriptive and Inferential Statistics on All Reasonable Specifications
Author(s) -
Uri Simonsohn,
Joseph P. Simmons,
Leif D. Nelson
Publication year - 2015
Publication title -
ssrn electronic journal
Language(s) - English
Resource type - Journals
ISSN - 1556-5068
DOI - 10.2139/ssrn.2694998
Subject(s) - computer science , identification (biology) , specification , set (abstract data type) , statistical hypothesis testing , null hypothesis , statistics , econometrics , mathematics , machine learning , programming language , botany , biology
Empirical results often hinge on data analytic decisions that are simultaneously defensible, arbitrary, and motivated. To mitigate this problem we introduce Specification-Curve Analysis, which consists of three steps: (i) identifying the set of theoretically justified, statistically valid, and non-redundant analytic specifications, (ii) displaying alternative results graphically, allowing the identification of decisions producing different results, and (iii) conducting statistical tests to determine whether as a whole results are inconsistent with the null hypothesis. We illustrate its use by applying it to three published findings. One proves robust, one weak, one not robust at all.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom