z-logo
open-access-imgOpen Access
Short-Term Forecasting for Empirical Economists. A Survey of the Recently Proposed Algorithms
Author(s) -
Máximo Camacho,
Gabriel PérezQuirós,
Pilar Poncela
Publication year - 2013
Publication title -
ssrn electronic journal
Language(s) - English
Resource type - Journals
ISSN - 1556-5068
DOI - 10.2139/ssrn.2353772
Subject(s) - term (time) , computer science , algorithm , econometrics , economics , quantum mechanics , physics

Abstract

Practitioners do not always use research findings, sometimes because the research is not always conducted in a manner relevant to real-world practice. This survey seeks to close the gap between research and practice on short-term forecasting in real time. Towards this end, we review the most relevant recent contributions to the literature, examine their pros and cons, and we take the liberty of proposing some lines of future research. We include bridge equations, MIDAS, VARs, factor models and Markov-switching factor models, all allowing for mixed-frequency and ragged ends. Using the four constituent monthly series of the Stock–Watson coincident index, industrial production, employment, income and sales, we evaluate their empirical performance to forecast quarterly US GDP growth rates in real time. Finally, we review the main results regarding the number of predictors in factor based forecasts and how the selection of the more informative or representative variables can be made.

DOI:10.1561/0818

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom