z-logo
open-access-imgOpen Access
Generalizing Smooth Transition Autoregressions
Author(s) -
Emilio Zanetti Chini
Publication year - 2013
Publication title -
ssrn electronic journal
Language(s) - English
Resource type - Journals
ISSN - 1556-5068
DOI - 10.2139/ssrn.2340539
Subject(s) - generalization , asymmetry , autoregressive model , monte carlo method , mathematics , econometrics , series (stratigraphy) , function (biology) , statistical physics , computer science , statistics , physics , mathematical analysis , paleontology , quantum mechanics , evolutionary biology , biology
We introduce a variant of the smooth transition autoregression - the GSTAR model - capable to parametrize the asymmetry in the tails of the transition equation by using a particular generalization of the logistic function. A General-to-Specific modelling strategy is discussed in detail, with particular emphasis on two different LM-type tests for the null of symmetric adjustment towards a new regime and three diagnostic tests, whose power properties are explored via Monte Carlo experiments. Four classical real datasets illustrate the empirical properties of the GSTAR, jointly to a rolling forecasting experiment to evaluate its point and density forecasting performances. In all the cases, the dynamic asymmetry in the cycle is efficiently captured by the new model. The GSTAR beats AR and STAR competitors in point forecasting, while this superiority becomes less evident in density forecasting, specially if robust measures are considered.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom