A Model-Free Measure of Aggregate Idiosyncratic Volatility and the Prediction of Market Returns
Author(s) -
René García,
Daniel Mantilla-García,
Lionel Martellini
Publication year - 2013
Publication title -
ssrn electronic journal
Language(s) - English
Resource type - Journals
ISSN - 1556-5068
DOI - 10.2139/ssrn.2202961
Subject(s) - volatility (finance) , econometrics , economics , systematic risk , aggregate (composite) , measure (data warehouse) , financial economics , computer science , materials science , composite material , database
In this paper, we formally show that the cross-sectional variance of stock returns is a consistent and asymptotically efficient estimator for aggregate idiosyncratic volatility. This measure has two key advantages: it is model-free and observable at any frequency. Previous approaches have used monthly model based measures constructed from time series of daily returns. The newly proposed cross-sectional volatility measure is a strong predictor for future returns on the aggregate stock market at the daily frequency. Using the cross-section of size and book-to-market portfolios, we show that the portfolios' exposures to the aggregate idiosyncratic volatility risk predict the cross-section of expected returns.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom