z-logo
open-access-imgOpen Access
Forecasting Stock Returns Under Economic Constraints
Author(s) -
Davide Pettenuzzo,
Allan Timmermann,
Rossen Valkanov
Publication year - 2012
Publication title -
ssrn electronic journal
Language(s) - English
Resource type - Journals
ISSN - 1556-5068
DOI - 10.2139/ssrn.2186574
Subject(s) - stock (firearms) , economics , econometrics , financial economics , geography , archaeology
We propose a new approach to imposing economic constraints on time-series forecasts of the equity premium. Economic constraints are used to modify the posterior distribution of the parameters of the predictive return regression in a way that better allows the model to learn from the data. We consider two types of constraints: Non-negative equity premia and bounds on the conditional Sharpe ratio, the latter of which incorporates timevarying volatility in the predictive regression framework. Empirically, we find that economic constraints systematically reduce uncertainty about model parameters, reduce the risk of selecting a poor forecasting model, and improve both statistical and economic measures of out-of-sample forecast performance. The Sharpe ratio constraint, in particular, results in considerable economic gains.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom