Which Model to Match?
Author(s) -
Matteo Barigozzi,
Roxana Halbleib,
David Veredas
Publication year - 2012
Publication title -
ssrn electronic journal
Language(s) - English
Resource type - Journals
ISSN - 1556-5068
DOI - 10.2139/ssrn.1986419
Subject(s) - computer science
The asymptotic efficiency of indirect estimation methods, such as the efficient method of moments and indirect inference, depends on the choice of the auxiliary model. To date, this choice has been somewhat ad hoc and based on an educated guess. In this article we introduce a class of information criteria that helps the user to optimize the choice between nested and non–nested auxiliary models. They are the indirect analogues of the widely used Akaike–type criteria. A thorough Monte Carlo study based on two simple and illustrative models shows the usefulness of the criteria.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom