z-logo
open-access-imgOpen Access
A Jackknife-Type Estimator for Portfolio Revision
Author(s) -
Roland Füss,
Felix Miebs,
Fabian Trübenbach
Publication year - 2011
Publication title -
ssrn electronic journal
Language(s) - English
Resource type - Journals
ISSN - 1556-5068
DOI - 10.2139/ssrn.1855225
Subject(s) - jackknife resampling , estimator , type (biology) , portfolio , econometrics , mathematics , computer science , statistics , actuarial science , economics , financial economics , biology , ecology
This article proposes a novel approach to portfolio revision. The current literature on portfolio optimization uses a somewhat naive approach, where portfolio weights are always completely revised after a predefined fixed period. However, one shortcoming of this procedure is that it ignores parameter uncertainty in the estimated portfolio weights, as well as the biasedness of the in-sample portfolio mean and variance as estimates of the expected portfolio return and out-of-sample variance. To rectify this problem, we propose a jackknife procedure to determine the optimal revision intensity, i.e. the percent of wealth that should be shifted to the new, in-sample optimal portfolio. We find that our approach leads to highly stable portfolio allocations over time, and can significantly reduce the turnover of several well established portfolio strategies. Moreover, the observed turnover reductions lead to statistically and economically significant performance gains in the presence of transaction costs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom