z-logo
open-access-imgOpen Access
Wavelet-Based Testing for Serial Correlation of Unknown Form in Panel Models
Author(s) -
Yongmiao Hong,
Chihwa Kao
Publication year - 2000
Publication title -
ssrn electronic journal
Language(s) - English
Resource type - Journals
ISSN - 1556-5068
DOI - 10.2139/ssrn.1808179
Subject(s) - wavelet , autocorrelation , correlation , computer science , mathematics , algorithm , pattern recognition (psychology) , artificial intelligence , econometrics , statistics , speech recognition , geometry
Wavelet analysis is a new mathematical tool developed as a unified field of science over the last decade. As spatially adaptive analytic tools, wavelets are useful for capturing serial correlation where the spectrum has peaks or kinks, as can arise from persistent/strong dependence, seasonality or use of seasonal data such as quarterly and monthly data, business cycles, and other kinds of periodicity. This paper proposes a new class of wavelet-based tests for serial correlation of unknown form in the estimated residuals of an error component model, where the error components can be one-way or two-way, the individual and time effects can be fixed or random, the regressors may contain lagged dependent variables or deterministic/stochastic trending variables. The proposed tests are applicable to unbalanced heterogeneous panel data. They have a convenient null limit N (0,1) distribution. No formulation of an alternative is required, and the tests are consistent against serial correlation of unknown form. We propose and justify a data-driven finest scale, in an automatic manner, converges to zero under the null hypothesis of no serial correlation and grows to infinity as the sample size increases under the alternative, ensuring the consistency of the proposed tests. Simulation studies show that the new tests perform rather well in small and finite samples in comparison with some existing popular tests for panel models and can be used as an effective evaluation procedure for panel models.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom