Modeling Storage and Demand Management in Electricity Distribution Grids
Author(s) -
Andreas Schröder,
Jan Siegmeier,
Murk Creusen
Publication year - 2011
Publication title -
ssrn electronic journal
Language(s) - English
Resource type - Journals
ISSN - 1556-5068
DOI - 10.2139/ssrn.1793164
Subject(s) - electricity demand , electricity , electric power distribution , distribution (mathematics) , demand management , stand alone power system , business , environmental economics , environmental science , distributed generation , economics , engineering , renewable energy , electricity generation , electrical engineering , power (physics) , mathematics , macroeconomics , mathematical analysis , physics , quantum mechanics , voltage
Storage devices and demand control may constitute beneficial tools to optimize electricity generation with a large share of intermittent resources through inter-temporal substitution of load. We quantify the related cost reductions in a simulation model of a simplified stylized medium-voltage grid (10kV) under uncertain demand and wind output. Benders Decomposition Method is applied to create a two-stage stochastic program. The model informs an optimal investment sizing decision as regards specific 'smart grid' applications such as storage facilities and meters enabling load control. Model results indicate that central storage facilities are a more promising option for generation cost reductions as compared to demand management. Grid extensions are not appropriate in any of our scenarios. A sensitivity analysis is applied with respect to the market penetration of uncoordinated Plug-In Electric Vehicles which are found to strongly encourage investment into load control equipment for `smart` charging and slightly improve the case for central storage devices.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom