z-logo
open-access-imgOpen Access
A Test of Singularity for Distribution Functions
Author(s) -
Victoria ZindeWalsh,
John W. Galbraith
Publication year - 2011
Publication title -
ssrn electronic journal
Language(s) - English
Resource type - Journals
ISSN - 1556-5068
DOI - 10.2139/ssrn.1752207
Subject(s) - test (biology) , mathematics , computer science , geology , paleontology
Many non- and semi- parametric estimators have asymptotic properties that have been established under conditions that exclude the possibility of singular parts in the distribution. It is thus important to be able to test for absence of singularities. Methods of testing that focus on specific singularities do exist, but there are few generally applicable approaches. A general test based on kernel density estimation was proposed by Frigyesi and Hossjer (1998), but this statistic can diverge for some absolutely continuous distributions. Here we use a result in Zinde-Walsh (2008) to characterize distributions with varying degrees of smoothness, via functionals that reveal the behavior of the bias of the kernel density estimator. The statistics proposed here have well defined asymptotic distributions that are asymptotically pivotal in some class of distributions (e.g. for continuous density) and diverge for distributions in an alternative class, at a rate that can be explicitly evaluated and controlled.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom