z-logo
open-access-imgOpen Access
Persistence in Nonlinear Time Series: A Nonparametric Approach
Author(s) -
Juan Carlos Escanciano,
Javier Hualde
Publication year - 2009
Publication title -
ssrn electronic journal
Language(s) - English
Resource type - Journals
ISSN - 1556-5068
DOI - 10.2139/ssrn.1346052
Subject(s) - persistence (discontinuity) , nonparametric statistics , nonlinear system , series (stratigraphy) , econometrics , mathematics , biology , physics , engineering , paleontology , geotechnical engineering , quantum mechanics
The purpose of the present paper is to relate two important concepts of time series analysis, namely, nonlinearity and persistence. Traditional measures of persistence are based on correlations or periodograms, which may be inappropriate under nonlinearity and/or non-Gaussianity. This article proves that nonlinear persistence can be characterized by cumulative measures of dependence. The new cumulative measures are nonparametric, simple to estimate and do not require the use of any smoothing user-chosen parameters. In addition, we propose nonparametric estimates of our measures and establish their limiting properties. Finally, we employ our measures to analyze the nonlinear persistence properties of some international stock market indices, where we find an ubiquitous nonlinear persistence in conditional variance that is not accounted for by popular parametric models or by classical linear measures of persistence. This finding has important economic implications in, e.g., asset pricing and hedging. Conditional variance persistence in bull and bear markets is also analyzed and compared.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom