z-logo
open-access-imgOpen Access
Empirical Identification of the Vector Autoregression: The Causes and Effects of U.S. M2
Author(s) -
Kevin D. Hoover,
Selva Demiralp,
Stephen J. Perez
Publication year - 2008
Publication title -
ssrn electronic journal
Language(s) - English
Resource type - Journals
ISSN - 1556-5068
DOI - 10.2139/ssrn.1091249
Subject(s) - vector autoregression , bayesian vector autoregression , econometrics , identification (biology) , autoregressive model , economics , mathematics , statistics , biology , bayesian probability , botany
The M2 monetary aggregate is monitored by the Federal Reserve, using a broad brush theoretical analysis and an informal empirical analysis. This paper illustrates empirical identification of an eleven-variable system, in which M2 and the factors that the Fed regards as causes and effects are captured in a vector autogregression. Taking account of cointegration, the methodology combines recent developments in graph-theoretical causal search algorithms with a general-to-specific search algorithm to identify a fully specified structural vector autoregression (SVAR). The SVAR is used to examine the causes and effects of M2 in a variety of ways. We conclude that, while the Fed has rightly identified a number of special factors that influence M2 and while M2 detectably affects other important variables, there is 1) little support for the core quantity-theoretic approach to M2 used by the Fed; and 2) M2 is a trivial linkage in the transmission mechanism from monetary policy to real output and inflation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom