z-logo
open-access-imgOpen Access
022 Manipulation of the Greenhouse Microclimate to Improve the Efficacy of Entomopathogens for Control of Greenhouse Pests
Author(s) -
J. L. Shipp,
Yun Zhang
Publication year - 2000
Publication title -
hortscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.518
H-Index - 90
eISSN - 2327-9834
pISSN - 0018-5345
DOI - 10.21273/hortsci.35.3.391e
Subject(s) - greenhouse , beauveria bassiana , humidity , microclimate , biology , aphid , horticulture , melon , agronomy , biological pest control , toxicology , germination , pest analysis , relative humidity , ecology , physics , thermodynamics
Application of entomopathogenic fungi by inundative releases has been attempted for control of a wide range of insect pests, with generally poor results. This is largely because entomopathogens are often treated as direct substitutes for chemical insecticides and applied without an adequate knowledge of their interactions with the local environment. Humidity of greater than 90% RH has long been regarded as the a critical condition for germination and infection by the spores. With both temperature and humidity controlled, greenhouse crops offer an excellent potential for pest control using entomopathogens. The long-term maintenance of >90% RH, however, is not standard practice in greenhouse production. This study explored the possibility of improving the efficacy of the fungi by temporarily changing greenhouse humidity without adversely affecting crop growth. The study included laboratory and greenhouse trials. In laboratory trials, four humidity levels of 75%, 80%, 89%, and 97.5% RH were evaluated over a 48-h period. Three commercial products of Beauveria bassiana were evaluated (Naturalis-O, Botanigard 22 WP, and Botanigard ES). Greenhouse pests of green peach aphid, melon aphid, western flower thrips, whitefly, and two-spotted spider mite were used as target insects. The infection rate of B. bassiana was found to increase when the sprayed adult insects were exposed to higher humidity levels with the maximum infection obtained at 97.5% RH. Percent infection and difference between humidity levels, however, were formulation- and host-dependent. The highest overall control efficacy was obtained by using Botanigard ES. Botanigard ES was highly effective to adult green peach aphid, melon aphid, and greenhouse whitefly at high humidities. Effects of B. bassiana against biological control agents for greenhouse vegetable crops were also evaluated. Greenhouse trials were conducted in two adjacent greenhouse compartment with high and low humidity conditions for 48 h, respectively, for selected pest insects to valid laboratory results.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here