Volumetric Efficiency of Sucker Rod Pumps When Pumping Gas-Oil Mixtures
Author(s) -
C.A. Connally,
Christer Sandberg,
N. Stein
Publication year - 1953
Publication title -
journal of petroleum technology
Language(s) - English
Resource type - Journals
eISSN - 1944-978X
pISSN - 0149-2136
DOI - 10.2118/284-g
Subject(s) - sucker rod , volumetric efficiency , volume (thermodynamics) , petroleum engineering , materials science , environmental science , compression ratio , mechanics , progressive cavity pump , reciprocating pump , variable displacement pump , automotive engineering , thermodynamics , composite material , engineering , physics , internal combustion engine
This paper describes the results of volumetric efficiency tests on oil, well pumps handling gas oil mixtures. The work was performed in a large scale, above ground unit wherein test conditions could be accurately controlled and measured. The main variables studied were gas/oil ratio (including gas from solution and free gas mixed with oil), pump compression ratio, pump stroke length, pump speed, and clearance volume between the valves at their closest approach. Results are presented for two different pumps and for oils of two viscosities. Relatively small amounts of gas entering the pump resulted in large decreases in volumetric efficiency. Under conditions where the pump was operating at reduced efficiency because of the presence of gas, it was found that variation in the clearance volume between. the standing and traveling valves had a considerable effect on pump efficiency level. This effect of the valve clearance volume was found to be significantly altered by the viscosity of the oil used in the tests. The effects on pump efficiency of the other variables studied were found to be relatively small over the range of conditions utilized. Introduction The production of oil by pumping is often hampered by low volumetric efficiency. A direct increase in lifting costs results from low volumetric efficiency. An indirect increase in lifting costs, probably greater than the direct increase, results from additional wear and tear on pumping equipment and from the down-time necessary for the repairs which can be traced to low-efficiency operation. Both increases in lifting costs tend to reduce economically recoverable oil. A number of different factors can contribute to low pump efficiency. A known basic cause of low efficiency is the presence of free gas in the pumped fluid. Pump volumetric efficiency is calculated only on the basis of liquid pumped and because any free gas pumped is discounted, this volume of free gas would represent a loss of pump efficiency. However, gas also causes a reduction in pump efficiency because it is a highly compressible fluid.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom