
6-Chloro-N,N-diethyl-1,3,5-triazine-2,4-diamine (CAT) Sensor Based on Biomimetic Recognition Utilizing a Molecularly Imprinted Artificial Receptor
Author(s) -
Masaki Fuchiwaki,
Akio Shimizu,
Izumi Kubo
Publication year - 2007
Publication title -
analytical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.392
H-Index - 73
eISSN - 1348-2246
pISSN - 0910-6340
DOI - 10.2116/analsci.23.49
Subject(s) - chemistry , molecularly imprinted polymer , ethylene glycol dimethacrylate , molecular imprinting , methacrylic acid , chromatography , nuclear chemistry , monomer , detection limit , polymer , polymer chemistry , organic chemistry , selectivity , catalysis
We aimed to develop a 6-chloro-N,N-diethyl-1,3,5-triazine-2,4-diamine (CAT)-sensing system based on a biomimetic receptor of a molecularly imprinted polymer for CAT and electrochemical determination of CAT. A molecularly imprinted polymer for CAT was prepared by the polymerization of methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylate (EDMA) as a cross-linker with a template molecule (CAT) in dimethyl formamide (DMF). The polymer prepared with the ratio of these monomers (CAT:MAA:EDMA = 1:7.5:20) showed the most selective rebinding to CAT, and the obtained polymer was recognized as a CAT-imprinted polymer (CAT-MIP). The effect of the specific imprinting sites of CAT-MIP was demonstrated by Scatchard analysis. In an aqueous solution of CAT, CAT-MIP showed the maximum binding of CAT in a 0.05 M phosphate buffer (PB), pH 5.0. The binding amount of CAT to CAT-MIP was 24% more than atrazine and 72% more than propazine. The CAT-sensing system was composed of a column of CAT-MIP particles and a voltammetry analyzer. The reductive current of CAT depended on the concentration of CAT up to 30 microM with the system.