z-logo
open-access-imgOpen Access
Discrimination of Poly(vinyl chloride) Samples with Different Plasticizers and Prediction of Plasticizer Contents in Poly(vinyl chloride) Using Near-infrared Spectroscopy and Neural-network Analysis
Author(s) -
Kazumitsu Saeki,
Kimito Funatsu,
K. Tanabe
Publication year - 2003
Publication title -
analytical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.392
H-Index - 73
eISSN - 1348-2246
pISSN - 0910-6340
DOI - 10.2116/analsci.19.309
Subject(s) - plasticizer , vinyl chloride , chemistry , polyvinyl chloride , partial least squares regression , calibration , infrared spectroscopy , analytical chemistry (journal) , near infrared spectroscopy , spectroscopy , nuclear chemistry , chromatography , organic chemistry , polymer , optics , mathematics , copolymer , quantum mechanics , statistics , physics
In the recycling of poly(vinyl chloride) (PVC), it is required to discriminate every plasticizer for quality control. For this purpose, the near-infrared spectra were measured for 41 kinds of PVC samples with different plasticizers (DINP, DOP, DOA, TOTM and Polyester) and different plasticizer contents (0-49%). A neural-network analysis was applied to the near-infrared spectra pretreated by second-derivative processing. They were discriminated from one another. The neural-network analysis also allowed us to propose a calibration model which predicts the contents of plasticizers in PVC. The correlation coefficient (R) and the root-mean-square error of prediction (RMSEP) for the DINP calibration model were found to be 0.999 and 0.41 wt%, respectively. In comparison, a partial least-squares regression analysis was carried out. The R and RMSEP of the DINP calibration model were calculated to be 0.993 and 1.27 wt%, respectively. It is found that a near-infrared spectra measurement combined with a neural-network analysis is useful for plastic recycling.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here