An Exact Expression for the Effective Bulk Modulus for Acoustic Wave Propagation in Cylindrical Patchy-Saturation Rocks
Author(s) -
Zhaoyun Zong,
Yu Chen
Publication year - 2021
Publication title -
lithosphere
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.737
H-Index - 43
eISSN - 1941-8264
pISSN - 1947-4253
DOI - 10.2113/2021/8064607
Subject(s) - attenuation , saturation (graph theory) , geology , oscillation (cell signaling) , anelastic attenuation factor , dispersion (optics) , mechanics , wave propagation , seismic wave , acoustic dispersion , seismology , mineralogy , physics , optics , chemistry , biochemistry , mathematics , combinatorics
Hydrocarbon reservoirs often contain partially gas-saturated rocks that have attracted the attention of exploration geophysicists and geologists for many years. Wave-induced fluid flow (WIFF) is an effective mechanism to quantify seismic wave dispersion and attenuation in partially gas-saturated rocks. In this study, we focus on the local fluid flow induced by variations in fluids in different regions and present a new model that describes seismic wave propagation in partially gas-saturated rocks, namely, the cylindrical patchy-saturation model. Because the seismic wave velocity and attenuation oscillate at high frequencies, it is not ideal for studying dispersion and attenuation caused by WIFF. To avoid the high-frequency oscillation in the cylindrical patchy-saturated model, we use an approximation to the Newman function instead of the full Newman function to calculate the effective bulk modulus. We then calculate the P-wave velocity and attenuation of the proposed model and interpret the lab-measured data. The proposed model is an alternative patchy-saturation model that can explain the problem of high-frequency oscillation and low-frequency attenuation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom