z-logo
open-access-imgOpen Access
The Carboniferous Arc of the North Pamir
Author(s) -
Johannes Rembe,
Edward R. Sobel,
Jonas Kley,
Renjie Zhou,
Rasmus Thiede,
Jie Chen
Publication year - 2021
Publication title -
lithosphere
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.737
H-Index - 43
eISSN - 1941-8264
pISSN - 1947-4253
DOI - 10.2113/2021/6697858
Subject(s) - carboniferous , geology , viséan , paleozoic , island arc , geochemistry , crust , volcanic rock , basement , paleontology , oceanic crust , subduction , terrane , continental crust , volcano , tectonics , archaeology , history , structural basin
In this study, we investigate the age and geochemical variability of volcanic arc rocks found in the Chinese, Kyrgyz, and Tajik North Pamir in Central Asia. New geochemical and geochronological data together with compiled data from the literature give a holistic view of an early to mid-Carboniferous intraoceanic arc preserved in the northeastern Pamir. This North Pamir volcanic arc complex involves continental slivers in its western reaches and transforms into a Cordilleran-style collision zone with arc-magmatic rocks. These are hosted in part by Devonian to Carboniferous oceanic crust and the metamorphic Kurguvad basement block of Ediacaran age (maximum deposition age) in Tajikistan. We discuss whether a sliver of Carboniferous subduction-related basalts and intruded tonalites close to the Chinese town of Mazar was part of the same arc. LA-ICP-MS U-Pb dating of zircons, together with whole rock geochemistry derived from tonalitic to granodioritic intrusions, reveals a major Visean to Bashkirian intrusive phase between 340 and 320 Ma ago. This clearly postdates Paleozoic arc-magmatic activity in the West Kunlun by ~100 Ma. This observation, along with geochemical evidence for a more pronounced mantle component in the Carboniferous arc-magmatic rocks of the North Pamir, disagrees with the common model of a continuous Kunlun belt from the West Kunlun into the North Pamir. Moreover, Paleozoic oceanic units younger than and west of the Tarim cratonic crust challenge the idea of a continuous cratonic Tarim-Tajik continent beneath the Pamir.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom