z-logo
open-access-imgOpen Access
Geochemical Properties and Pore Structure Control on Oil Extraction of Shale
Author(s) -
Dengke Liu,
Junwei Su,
Zhaolin Gu,
Yiru Qi,
Fu Yang,
Tao Tian,
Feng Ye
Publication year - 2021
Publication title -
lithosphere
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.737
H-Index - 43
eISSN - 1941-8264
pISSN - 1947-4253
DOI - 10.2113/2021/6646791
Subject(s) - kerogen , oil shale , extraction (chemistry) , geology , maceral , mineralogy , adsorption , scanning electron microscope , shale oil , source rock , chemical engineering , materials science , chemistry , structural basin , chromatography , composite material , petrography , organic chemistry , geomorphology , paleontology , engineering
Despite geochemical properties and pore structures for shale oil extraction, the interplay among shale chemistry, pore network, and hydrocarbon movability still is an open question. Here, by using hybrid experimental methods, including backscatter scanning electron microscopy, X-ray diffraction, adsorption/desorption isotherm, and nuclear magnetic resonance, we provide a general characteristic of geochemistry and pore structures of Chang 7 (C7) shale in Ordos basin and figure out how these properties impact the shale oil extraction. Our results confirmed that the C7 shale in Ordos basin could be divided into three types based on the mineral components with various pore structures, and the proportion of the pores that radius below 4.8 nm (from adsorption branch) or 3.8 nm (from desorption branch) play a dominant role in the determination of pore size distributions. The kerogen index that is derived from maceral types was the most significant geochemical indicator; high kerogen index was corresponding to large pore volumes and surface areas, but low pore diameters. We identify the pore structure mechanism—mesopores predominantly or micropores abundantly (increase free fluid index) and absence of inorganic or organic pores (decrease free fluid index)—responsible for the oil extraction capability and show that the unmovable fluid stained in the voids would lead to the slow rate decay of the curves, which caused the nonsignal disturbance. Our results demonstrate the powerful control of maceral components and pore diameters on shale oil extraction and show the markedly different flow behavior of various types of shale.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom