z-logo
open-access-imgOpen Access
Crustal Density and Susceptibility Structure beneath Achankovil Shear Zone, India
Author(s) -
M. Hanuma Prasad,
Chandra Prakash Dubey,
Kumar Batuk Joshi,
V. M. Tiwari
Publication year - 2021
Publication title -
lithosphere
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.737
H-Index - 43
eISSN - 1941-8264
pISSN - 1947-4253
DOI - 10.2113/2021/6017801
Subject(s) - geology , shear zone , archean , bouguer anomaly , crust , indian shield , seismology , magnetic anomaly , escarpment , granulite , gravity anomaly , block (permutation group theory) , continental crust , shear (geology) , outcrop , geophysics , geochemistry , paleontology , craton , structural basin , tectonics , geometry , oil field , mathematics , facies
The Southern Granulite Terrain (SGT) is a large tract of exposed Archean continental crust, divided into the Madurai Block (MB), Trivandrum Block (TB), and Nagercoil Block (NB). These crustal domains are linked with the NW-SE trending Achankovil Shear Zone (AKSZ). We combine gravity and magnetic data with previously published ground observations and geochronological data to re-evaluate the crustal architecture, evolution of the AKSZ, and possible extension of AKSZ into Madagascar. Analyses indicate that the long wavelength trends of the magnetic anomalies originate at ~20 km depth of different SGT blocks. These observations are corroborated with the gravity as well as computed gravity gradient anomalies. The presence of khondalite outcrops in Trivandrum Block implies that high magnetization crust is the main source of positive magnetic anomalies. Such magnetic anomalies advocate that SGT preserves the remanent of Archean crustal blocks in South India, a part due to variation in thermal and geochemical processes. The AKSZ, TB, and MB exhibit contrasting magnetic crustal signatures. The joint modeling results reveal a three-layered crustal configuration with varying Moho ranging from 41 to 34 km in NE to SW, respectively. It is also noted that AKSZ is a narrow and deep structure near to the Western Ghats Escarpment while it is wide and shallow in the far-east, which implies that the evolution of the Western Ghats is a late geological event.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom