z-logo
open-access-imgOpen Access
Study on the Bearing Characteristics and Application of the Filling Body in Original Roadway Filling and Nonpillar Driving
Author(s) -
Wenbao Shi,
Yan Li,
Jucai Chang
Publication year - 2021
Publication title -
lithosphere
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.737
H-Index - 43
eISSN - 1941-8264
pISSN - 1947-4253
DOI - 10.2113/2021/4238008
Subject(s) - bearing (navigation) , geology , geotechnical engineering , compressive strength , mining engineering , coal , load bearing , chinese academy of sciences , materials science , china , composite material , engineering , waste management , computer science , archaeology , artificial intelligence , history
Original roadway filling and nonpillar driving can effectively solve the difficulty facing mining replacement in the stope of deep mines. As the bearing characteristics of the filling body in the original roadway play a crucial role in the structural stability of the overlying strata, with the recovery and geological conditions of 62210 working face in Xinzhuangzi Coal Mine, Huainan Mining Group, China, as the background, this study analyzed the stability characteristics of the filling body in the original roadway through comprehensive research methods of theoretical analysis, laboratory tests, and onsite monitoring. The results disclose that the filling body in the original roadway should boost early strength, strong bearing capacity, and long-term weakening. When the water-cement ratios are 1 : 1, 1.5 : 1, 2 : 1, 2.5 : 1, and 3 : 1, the strengths of the filling body are 1.12 MPa, 0.93 MPa, 0.57 MPa, 0.33 MPa, and 0.21 MPa at 2 h and 5.63 MPa, 4.66 MPa, 2.87 MPa, 1.65 MPa, and 1.02 MPa at 48 h, respectively. The strengths surge by 5 times within 2 d on the whole and reach the maximum at about 7 d, i.e., 8.12 MPa, 6.91 MPa, 6.60 MPa, 3.95 MPa, and 2.20 MPa, respectively. As time goes, the water content of the filling body gradually decreases and the compressive strength plunges. This demonstrates that the rapid solidification material with a high water content can satisfy the requirements of the bearing characteristics of the original roadway filling body. With reference to numerical simulation and the data monitored onsite, it can be known that the filling body in the original roadway can support the roof effectively and control the surrounding rock deformation of newly excavated roadways in the lower section. The research results provide theoretical guidance for coal mining under similar geological conditions and serve as reference for safe and efficient coal mining.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom