z-logo
open-access-imgOpen Access
(U-Th)/He Thermochronology of the Indus Group, Ladakh, Northwest India: Is Neogene Cooling a Continental-Scale Thermal Event in the India-Asia Collision Zone?
Author(s) -
Gourab Bhattacharya,
Delores M. Robinson,
Devon A. Orme
Publication year - 2021
Publication title -
lithosphere
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.737
H-Index - 43
eISSN - 1941-8264
pISSN - 1947-4253
DOI - 10.2113/2021/3321949
Subject(s) - indus , geology , neogene , thermochronology , continental collision , subduction , paleontology , collision zone , eurasian plate , sedimentary rock , facies , paleogene , tectonics , structural basin
The India-Asia continental collision zone archives a sedimentary record of the tectonic, geodynamic, and erosional processes that control the thermal history of the Himalayan orogenic interior since the onset of collision in early Paleogene time. In this paper, we present new (U-Th)/He thermochronometric cooling age data from 18 detrital zircons (ZHe) and 19 detrital apatites (AHe) of the early Eocene–early Miocene (ca. 50–23 Ma) continental facies of the Indus Group along the India-Asia collision zone in Ladakh, northwest (NW) India. This along-strike regional-scale low-temperature thermochronometric data set from the Indus basin is the first report of ZHe and AHe cooling ages from western and eastern Ladakh. Thermal modeling of our ZHe and AHe cooling ages indicates a postdepositional Neogene cooling signal in the Indus Group. Cooling initiated at ca. 21–19 Ma, was operational along the ~300 km strike of the collision zone in NW India by ca. 11 Ma, and continued until ca. 3 Ma. The Miocene cooling signal, also present along the India-Asia collision zone in south Tibet, is a continental-scale cooling event likely linked to increased erosional efficiency by the Indus and Yarlung Rivers across an elevated region resulting from the subduction dynamics of the underthrusting Indian plate.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom