Reconstructing the Physical and Chemical Development of a Pluton-Porphyry Complex in a Tectonically Reorganized Arc Crustal Section, Tioga Pass, Sierra Nevada
Author(s) -
Katie Ardill,
Valbone Memeti,
Scott R. Paterson
Publication year - 2020
Publication title -
lithosphere
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.737
H-Index - 43
eISSN - 1941-8264
pISSN - 1947-4253
DOI - 10.2113/2020/8872875
Subject(s) - geology , pluton , geochemistry , caldera , rhyolite , volcano , crust , dacite , volcanic rock , zircon , volcanic arc , magma , petrology , subduction , tectonics , seismology
In ancient or partially eroded arc sections, a protracted history of tectonism and deformation makes interpretation of local volcanic-plutonic relationships challenging. The fragmentary preservation of volcanic rocks relative to the extensive plutonic record in upper-crustal arc sections also suggests that a broader-scale approach that includes volcanic-hypabyssal-plutonic “fields” is useful. In this context, studies of hypabyssal intrusions emplaced at the intersection of volcanic and plutonic fields provide additional physical and chemical constraints on shallow-level magmatic processes. New mapping, U-Pb zircon geochronology, and geochemistry at Tioga Pass, in the central Sierra Nevada arc section, document the physical and chemical evolution of the Tioga Pass hypabyssal complex, a ca. 100 Ma system that includes an intrusive dacite-rhyolite porphyry unit and comagmatic Tioga Lake quartz monzodiorite. We interpret these units as a Cretaceous subvolcanic magma feeder system intruding a package of tectonically displaced Triassic and Jurassic volcanic and sedimentary rocks, rather than the previous interpretation of a Triassic caldera. The Tioga Pass magmatic system is a well-exposed example of a hypabyssal complex with meso- to micro-scale structures that are consistent with rapid cooling and emplacement between 0–6 km depth and compositions suggestive of extensive fractionation of largely mantle-derived magma. The Tioga Pass porphyry unit is one of many hypabyssal intrusions scattered along a ~50-kilometer-wide belt of the east-central Sierra Nevada that are spatially associated with coeval volcanic and plutonic rocks due to tectonic downward transfer of arc crust. They provide a valuable perspective of shallow magmatic processes that may be used to test upper-crustal plutonic-volcanic links in tectonically reorganized arc sections.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom