PDAC-Based 3-D Biped Walking Adapted to Rough Terrain Environment
Author(s) -
Tadayoshi Aoyama,
Kosuke Sekiyama,
Yasuhisa Hasegawa,
Toshio Fukuda
Publication year - 2012
Publication title -
journal of robotics and mechatronics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.257
H-Index - 19
eISSN - 1883-8049
pISSN - 0915-3942
DOI - 10.20965/jrm.2012.p0037
Subject(s) - terrain , computer science , robot , inverted pendulum , humanoid robot , biped robot , adaptability , control theory (sociology) , zero moment point , holonomic constraints , simulation , artificial intelligence , control (management) , geography , ecology , physics , cartography , classical mechanics , nonlinear system , quantum mechanics , biology
This paper deals with the 3-D biped walking of a humanoid type robot over rough terrain. We previously proposed efficient 3-D biped walking control using Passive Dynamic Autonomous Control (PDAC) based on the assumption of point-contact and virtual holonomic constraint of robot joints. Walking adaptability has not, however, been analyzed. We thus analyze the environmental adaptability of PDAC-based walking method in this paper. The robot is modeled as a variable-length 3-D inverted pendulum whose dynamics is modeled as a 2-D autonomous system by applying PDAC. We analyze the stability of the 2-D autonomous system using a Poincaré map and derive the stable range of uneven height over rough terrain. We then experimentally validate 3-D biped walking on unknown rough terrain using our humanoid type robot, Gorilla Robot III.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom