On-Chip Microparticle Manipulation Using Disposable Magnetically Driven Microdevices
Author(s) -
Hisataka Maruyama,
Fumihito Arai,
Toshio Fukuda
Publication year - 2006
Publication title -
journal of robotics and mechatronics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.257
H-Index - 19
eISSN - 1883-8049
pISSN - 0915-3942
DOI - 10.20965/jrm.2006.p0264
Subject(s) - microchannel , electromagnet , microparticle , microfluidics , particle (ecology) , materials science , magnetic particle inspection , magnetic separation , magnetic nanoparticles , magnet , lab on a chip , nanotechnology , mechanical engineering , engineering , oceanography , geology , nanoparticle , metallurgy , chemical engineering
We propose novel microdevices that are driven by magnetic force for microparticles manipulation in a microchip. We developed two microdevices - a particle sorter and a particle filter. In the particle sorter, we perform sorting by switching the microchannel flow by driving a magnetic shuttle. In the particle filter, we perform size-based particle filtering by using the space between a magnetic shuttle and a microchannel. The microparticles which are bigger than the available space are stuck in the microchannels and solution passes through the space. These devices are easily implemented into a microchip at low cost. We make the microchip disposable by making the electromagnet part detachable. We succeeded in driving the magnetic shuttle in the microchannel and confirmed the functionality of the particle sorter and the particle filter. Our proposal has the following advantages: (1) Treatment of the target or complicated control systems are not needed, (2) Microdevices are easily implemented in a microchip, (3) The microchip is made disposable by making the electromagnet part detachable.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom