z-logo
open-access-imgOpen Access
Impairment of Skin Capillary Recruitment Precedes Chronic Complications in Patients with Type 1 Diabetes
Author(s) -
Eduardo Tibiriçá,
Elba Rodrigues,
Roberta Arnoldi Cobas,
Marília Brito Gomes
Publication year - 2007
Publication title -
the review of diabetic studies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.701
H-Index - 41
eISSN - 1614-0575
pISSN - 1613-6071
DOI - 10.1900/rds.2007.4.85
Subject(s) - medicine , occlusion , diabetes mellitus , type 2 diabetes , dorsum , microcirculation , peripheral , intravital microscopy , reactive hyperemia , cardiology , blood flow , endocrinology , anatomy
Microvascular function in patients with type 1 diabetes without chronic complications was assessed using skin capillary recruitment during post-occlusive reactive hyperemia (PORH). Structural (maximal) capillary density was evaluated during venous occlusion. The study included 48 consecutive outpatients aged 26.3 +/- 10.8 years with type 1 diabetes (duration of 9.5 years) without chronic complications and 34 control subjects. Intravital capillary video-microscopy was used in the dynamic study of skin capillaries in the dorsum of the fingers and toes. Capillary recruitment during PORH (% increase in mean capillary density, MCD) was significantly higher in the controls than the patients in both the fingers (p < 0.001) and toes (p < 0.001). During venous occlusion, MCD increase was also higher in the controls than the patients in both the fingers (p < 0.05) and toes (p < 0.0001). In patients, no difference was found between MCD at baseline and after venous occlusion in the fingers but a decrease was observed in the toes (p < 0.001). It is concluded that skin capillary function is significantly impaired in both fingers and toes of patients with type 1 diabetes without chronic complications. Moreover, capillary density during venous occlusion did not increase in either extremity in the patients, suggesting that their capillaries at rest are already maximally recruited.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom