z-logo
open-access-imgOpen Access
GDNF secreted from adipose-derived stem cells stimulates VEGF-independent angiogenesis
Author(s) -
Zhaohui Zhong,
Huiying Gu,
Jirun Peng,
Wenzheng Wang,
Brian H. Johnstone,
Keith L. March,
Martin R. Farlow,
Yansheng Du
Publication year - 2016
Publication title -
oncotarget
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.373
H-Index - 127
ISSN - 1949-2553
DOI - 10.18632/oncotarget.9208
Subject(s) - medicine , angiogenesis , population , stem cell , adipose tissue , gerontology , biology , genetics , environmental health
Adipose tissue stroma contains a population of mesenchymal stem cells (MSC) promote new blood vessel formation and stabilization. These adipose-derived stem cells (ASC) promote de novo formation of vascular structures in vitro. We investigated the angiogenic factors secreted by ASC and discovered that glial-derived neurotrophic factor (GDNF) is a key mediator for endothelial cell network formation. It was found that both GDNF alone or present in ASC-conditioned medium (ASC-CM) stimulated capillary network formation by using human umbilical vein endothelial cells (HUVECs) and such an effect was totally independent of vascular endothelial growth factor (VEGF) activity. Additionally, we showed stimulation of capillary network formation by GDNF, but not VEGF, could be blocked by the Ret (rearranged during transfection) receptor antagonist RPI-1, a GDNF signaling inhibitor. Furthermore, GDNF were found to be overexpressed in cancer cells that were resistant to the anti-angiogenic treatment using the VEGF antibody. Cancer cells in the liver hepatocellular carcinoma (HCC), a non-nervous related cancer, highly overexpressed GDNF as compared to normal liver cells. Our data strongly suggest that, in addition to VEGF, GDNF secreted by ASC and HCC cells, may be another important factor promoting pathological neovascularization. Thus, GDNF may be a potential therapeutic target for HCC and obesity treatments.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom