microRNA-206 impairs c-Myc-driven cancer in a synthetic lethal manner by directly inhibiting MAP3K13
Author(s) -
Han Han,
Yuxing Chen,
Li Cheng,
Edward V. Prochownik,
Youjun Li
Publication year - 2016
Publication title -
oncotarget
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.373
H-Index - 127
ISSN - 1949-2553
DOI - 10.18632/oncotarget.7653
Subject(s) - microrna , carcinogenesis , cancer research , cancer , breast cancer , hematology , biology , transcription factor , medicine , oncology , gene , immunology , genetics
c-Myc (Myc) is one of the most frequently dysregulated oncogenic transcription factors in human cancer. By functionally screening a microRNA (miR) library, we identified miR-206 as being a synthetic lethal in Myc over-expressing human cancer cells. miR-206 inhibited MAP3K13, which resulted in Myc protein de-stabilization, and an inhibition of anchorage-independent growth and in vivo tumorigenesis by Myc over-expressing human cancer cells. Eliminating MAP3K13 by shRNA recapitulated the effects caused by miR-206, thus supporting the idea that miR-206's effect on Myc was mediated through MAP3K13. Conversely, enforced expression of MAP3K13 stabilized Myc by promoting its N-terminal phosphorylation and enhancing its transcriptional activity. Gene expression analyses of breast cancers expressing high levels of Myc indicated that low miR-206 expression and high MAP3K13 expression correlated with poor patient survival. The critical link between miR-206 and MAP3K13 in the development of Myc over-expressing human cancers suggests potential points of therapeutic intervention for this molecular sub-category.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom