z-logo
open-access-imgOpen Access
Axon guidance molecule semaphorin3A is a novel tumor suppressor in head and neck squamous cell carcinoma
Author(s) -
Zhao Wang,
Jie Chen,
Wei Zhang,
Yang Zheng,
ZiLu Wang,
Laikui Liu,
Heming Wu,
Jinhai Ye,
Bing Qi,
Yug Wu,
Xiaomeng Song
Publication year - 2016
Publication title -
oncotarget
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.373
H-Index - 127
ISSN - 1949-2553
DOI - 10.18632/oncotarget.6831
Subject(s) - medicine , cancer research , apoptosis , ectopic expression , cyclin d1 , cancer , cyclin dependent kinase 6 , carcinogenesis , metastasis , head and neck squamous cell carcinoma , transfection , oncology , cell cycle , head and neck cancer , biology , cell culture , biochemistry , genetics
Semaphorin3A (SEMA3A), an axon guidance molecule in the nervous system, plays an inhibitory role in oncogenesis. Here, we investigated the expression pattern and biological roles of SEMA3A in head and neck squamous cell carcinoma (HNSCC) by gain-of-function assays using adenovirus transfection and recombinant human SEMA3A protein. In addition, we explored the therapeutic efficacy of SEMA3A against HNSCC in vivo. We found that lower expression of SEMA3A correlated with shorter overall survival and had independent prognostic importance in patients with HNSCC. Both genetic and recombinant SEMA3A protein inhibited cell proliferation and colony formation and induced apoptosis, accompanied by decreased cyclin E, cyclin D, CDK2, CDK4 and CDK6 and increased P21, P27, activated caspase-5 and caspase-7. Moreover, over-expression of SEMA3A suppressed migration, invasion and epithelial-to-mesenchymal transition due in part to the inhibition of NF-κB and SNAI2 in HNSCC cell lines. Furthermore, intratumoral SEMA3A delivery significantly stagnated tumor growth in a xenograft model. Taken together, our results indicate that SEMA3A serves as a tumor suppressor during HNSCC tumorigenesis and a new target for the treatment of HNSCC.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom