z-logo
open-access-imgOpen Access
Genetic and epigenetic loss of microRNA-31 leads to feed-forward expression of EZH2 in melanoma
Author(s) -
Irfan A. Asangani,
Paul W. Harms,
Lois Dodson,
Mithil Pandhi,
Lakshmi P. Kunju,
Christopher A. Maher,
Douglas R. Fullen,
Timothy M. Johnson,
Thomas J. Giordano,
Nallasivam Palanisamy,
Arul M. Chinnaiyan
Publication year - 2012
Publication title -
oncotarget
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.373
H-Index - 127
ISSN - 1949-2553
DOI - 10.18632/oncotarget.622
Subject(s) - microrna , melanoma , ezh2 , epigenetics , medicine , cancer , cancer research , gene , biology , oncology , genetics
MicroRNAs (miRs) play a key role in cancer etiology by coordinately repressing numerous target genes involved in cell proliferation, migration and invasion. The genomic region in chromosome 9p21 that encompasses miR-31 is frequently deleted in solid cancers including melanoma; however the expression and functional role of miR-31 has not been previously studied in melanoma. Here, we queried the expression status and performed functional characterization of miR-31 in melanoma tissues and cell lines. We found that down-regulation of miR-31 was a common event in melanoma tumors and cell lines and was associated with genomic loss in a subset of samples. Down-regulation of miR-31 gene expression was also a result of epigenetic silencing by DNA methylation, and via EZH2-mediated histone methylation. Ectopic overexpression of miR-31 in various melanoma cell lines inhibited cell migration and invasion. miR-31 targets include oncogenic kinases such as SRC, MET, NIK (MAP3K14) and the melanoma specific oncogene RAB27a. Furthermore, miR-31 overexpression resulted in down-regulation of EZH2 and a de-repression of its target gene rap1GAP; increased expression of EZH2 was associated with melanoma progression and overall patient survival. Taken together, our study supports a tumor suppressor role for miR-31 in melanoma and identifies novel therapeutic targets.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom