Differentiation and transdifferentiation potentials of cancer stem cells
Author(s) -
Zhengjie Huang,
Tiantian Wu,
Allan Yi Liu,
Gaoliang Ouyang
Publication year - 2015
Publication title -
oncotarget
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.373
H-Index - 127
ISSN - 1949-2553
DOI - 10.18632/oncotarget.6098
Subject(s) - transdifferentiation , cancer stem cell , stromal cell , biology , tumor microenvironment , cancer research , metastasis , tumor progression , stem cell , tumor initiation , carcinogenesis , microbiology and biotechnology , cancer , genetics , tumor cells
Tumor cells actively contribute to constructing their own microenvironment during tumorigenesis and tumor progression. The tumor microenvironment contains multiple types of stromal cells that work together with the extracellular matrix and local and systemic factors to coordinately contribute to tumor initiation and progression. Tumor cells and their stromal compartments acquire many genetic and/or epigenetic alternations to facilitate tumor growth and metastasis. The cancer stem cell (CSC) concept has been widely applied to interpreting tumor initiation, growth, metastasis, dormancy and relapse. CSCs have differentiation abilities to generate the original lineage cells that are similar to their normal stem cell counterparts. Interestingly, recent evidence demonstrates that CSCs also have the potential to transdifferentiate into vascular endothelial cells and pericytes, indicating that CSCs can transdifferentiate into other lineage cells for promoting tumor growth and metastasis in some tissue contexts instead of only recruiting stromal cells from local or distant tissues. Although the transdifferentiation of CSCs into tumor stromal cells provides a new dimension that explains tumor heterogeneity, many aspects of CSC transdifferentiation remain elusive. In this review, we summarize the multi-lineage differentiation and transdifferentiation potentials of CSCs as well as discuss their potential contributions to tumor heterogeneity and tumor microenvironment in tumor progression.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom