A biotherapy based on PSCs-in-3D spheroid-ameliorated biologics depletes in vivo cancer-sustaining stem cells
Author(s) -
Wenhui Zhang,
Huanhuan Yang,
Yanna Zhang,
Yanan Lu,
Tianlin Zhou,
Meng Li,
Yan-Jun Wen,
Xiaojuan Lin,
Rong Xiang,
Xiancheng Chen
Publication year - 2015
Publication title -
oncotarget
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.373
H-Index - 127
ISSN - 1949-2553
DOI - 10.18632/oncotarget.5691
Subject(s) - cancer research , tumor microenvironment , homeobox protein nanog , immune system , stem cell , medicine , induced pluripotent stem cell , immunology , cancer stem cell , in vivo , biology , microbiology and biotechnology , embryonic stem cell , biochemistry , gene
CSCs are able to survive routine anticancer procedures and peripheral-immune attack. Here we develop and detail a framework of CSC elimination governed by 3D-biologics. Pluripotent cells-engineered 3D-biologics (PMSB) and control non-3D-biologics were prepared from placenta-based somatic stem cells (PSCs) and inoculated respectively into senile hosts bearing progressive mammary, lung, colon carcinomas and melanoma. We demonstrate that PMSB evokes in vivo central-immune microenvironment with subsequent re-expression of thymosin-α1 ~ β4 in thymic cortex-medulla borderline for rapid MHC-unrestricted renewal of γδT-dominated immunocompetence. The post-renewal γδT-subsets could accurately bind and drive CSCs into apoptosis. Finally, with central/peripheral integral microenvironment renewal and TERT/Wnt/β-catenin pathway blockade, the CSC-subsets are fully depleted, leading to substantial cure of diverse tumors by PMSB inoculation (P < 0.01), yet not by non-3D-biologics. Thus, our study may contribute to open up a new avenue for tumor remission via pluripotent cells-engineered 3D-biologics addressing quick renewal of central-thymus and peripheral immune-microenvironment.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom