z-logo
open-access-imgOpen Access
Upregulation of sex-determining region Y-box 9 (SOX9) promotes cell proliferation and tumorigenicity in esophageal squamous cell carcinoma
Author(s) -
Yingcai Hong,
Wen Chen,
Xiaojun Du,
Huiwen Ning,
Huaisheng Chen,
Ruiqing Shi,
Shaolin Lin,
Rongyu Xu,
Jinrong Zhu,
Shu Wu,
Haiyu Zhou
Publication year - 2015
Publication title -
oncotarget
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.373
H-Index - 127
ISSN - 1949-2553
DOI - 10.18632/oncotarget.5160
Subject(s) - downregulation and upregulation , esophageal squamous cell carcinoma , sox9 , cell growth , cancer research , medicine , cell , basal cell , oncology , carcinoma , biology , gene expression , gene , biochemistry , genetics
Sex-determining region Y-box 9 (SOX9), a vital transcription factor, play important roles in numerous biological and pathological processes. However, the clinical significance and biological role of SOX9 expression has not been characterized in human esophageal squamous cell cancer (ESCC). Herein, we found that SOX9 was markedly upregulated, at both mRNA and protein level, in ESCC cell lines and ESCC tissues and that SOX9 expression was significantly correlated with tumor clinical stage, T classification, N classification, M classification, pathological differentiation, and shorter overall survival. The proliferation and tumorigenicity of ESCC cells were dramatically induced by SOX9 overexpression but were inhibited by SOX9 knockdown both in vitro and in vivo. Moreover, we demonstrated that upregulation of SOX9 increased the expression of phosphorylated Akt, the cyclin-dependent kinase (CDK) regulator cyclin D1, phosphorylated forkhead box O (FOXO)1, and phosphorylated FOXO3, but SOX9 downregulation decreased their expression, whereas the levels of the CDK inhibitors p21Cip1 and p27Kip1 were attenuated in SOX9-transduced cells. Taken together, our results suggest that SOX9 plays an important role in promoting the proliferation and tumorigenesis of ESCC and may represent a novel prognostic marker for the disease.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom