z-logo
open-access-imgOpen Access
Handgrip strength and subclinical carotid atherosclerosis in relation to platelet levels among hypertensive elderly Japanese
Author(s) -
Yūji Shimizu,
Shimpei Sato,
Jun Koyamatsu,
Hirotomo Yamanashi,
Mako Nagayoshi,
Koichiro Kadota,
Shinya Kawashiri,
Keita Inoue,
Yasuhiro Nagata,
Takahiro Maeda
Publication year - 2017
Publication title -
oncotarget
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.373
H-Index - 127
ISSN - 1949-2553
DOI - 10.18632/oncotarget.20618
Subject(s) - medicine , subclinical infection , odds ratio , sarcopenia , cardiology
Age-related disruption of microvascular endothelium exacerbates hypertension and sarcopenia; and atherosclerosis is a well-known biological response to vascular endothelial injury. Therefore, prevalence of atherosclerosis among hypertensive elderly subjects may partly indicate the presence of an appropriate response to endothelial injury. We conducted a cross-sectional study of 795 elderly hypertensive Japanese subjects aged 60-89 years. Since platelet level is an indicator of vascular repair activity, subjects were stratified by platelet counts. No significant association between handgrip strength and subclinical carotid atherosclerosis (carotid intima-media thickness (CIMT) ≥1.1mm) was observed for subjects with lower platelet counts, while a significant positive association was observed for subjects with higher platelets. Adjusted odds and 95% confidence intervals of subclinical carotid atherosclerosis for 1 standard deviation increments in handgrip strength were 0.86 (0.61, 1.22) for subjects with lower platelets and 1.82 (1.26, 2.64) for subjects with higher platelets. A positive association between handgrip strength and subclinical carotid atherosclerosis exists in hypertensive elderly subjects with higher, but not lower, platelet counts. These results lead us to speculate that subjects with a beneficial influence on prevention of sarcopenia (maintenance of handgrip strength) may possess the capacity of active endothelial repair that causes atherosclerosis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom