Impact of inducible nitric oxide synthase (iNOS) expression on triple negative breast cancer outcome and activation of EGFR and ERK signaling pathways
Author(s) -
Pablo Garrido,
A. M. Shalaby,
Elaine M. Walsh,
Nessa Keane,
Mark Webber,
Maccon Keane,
Francis Sullivan,
Michael J. Kerin,
Grace Callagy,
Aideen E. Ryan,
Sharon A. Glynn
Publication year - 2017
Publication title -
oncotarget
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.373
H-Index - 127
ISSN - 1949-2553
DOI - 10.18632/oncotarget.19631
Subject(s) - triple negative breast cancer , cancer research , breast cancer , nitric oxide synthase , mapk/erk pathway , transactivation , epidermal growth factor receptor , medicine , egfr inhibitors , biology , cancer , signal transduction , nitric oxide , microbiology and biotechnology , gene expression , biochemistry , gene
Inflammation is implicated in triple negative breast cancer (TNBC) progression. TNBC carries a worse prognosis than other breast cancer subtypes, and with the clinical and molecular heterogeneity of TNBC, there is a lack of effective therapeutic targets available. Identification of molecular targets for TNBC subtypes is crucial towards personalized patient stratification. Inducible nitric oxide synthase (iNOS) has been shown to induce p53 mutation accumulation, basal-like gene signature enrichment and transactivation of the epidermal growth factor receptor (EGFR) via s-nitrosylation. Herein we report that iNOS is associated with disease recurrence, distant metastasis and decreased breast cancer specific survival in 209 cases of TNBC. Employing TNBC cell lines representing normal basal breast, and basal-like 1 and basal-like 2 tumors, we demonstrate that nitric oxide (NO) induces EGFR-dependent ERK phosphorylation in basal-like TNBC cell lines. Moreover NO mediated cell migration and cell invasion was found to be dependent on EGFR and ERK activation particularly in basal-like 2 TBNC cells. This occurred in conjunction with NF-κB activation and increased secretion of pro-inflammatory cytokines IL-8, IL-1β and TNF-α. This provides substantial evidence for EGFR as a therapeutic target to be taken into consideration in the treatment of a specific subset of basal-like TNBC overexpressing iNOS.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom