z-logo
open-access-imgOpen Access
Aberrant DNA methylation of GATA binding protein 3 (GATA3), interleukin-4 (IL-4), and transforming growth factor-β (TGF-β) promoters in Behcet's disease
Author(s) -
Yunyun Zhu,
Yiguo Qiu,
Hongsong Yu,
Shenglan Yi,
Wencheng Su,
Aize Kijlstra,
Peizeng Yang
Publication year - 2017
Publication title -
oncotarget
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.373
H-Index - 127
ISSN - 1949-2553
DOI - 10.18632/oncotarget.19500
Subject(s) - gata3 , dna methylation , methylation , pathogenesis , behcet's disease , medicine , transforming growth factor beta , foxp3 , promoter , transforming growth factor , immunology , cancer research , microbiology and biotechnology , biology , gene expression , disease , transcription factor , dna , gene , genetics , immune system
The pathogenesis of Behcet's disease (BD) remains poorly understood. The purpose of this study was to investigate whether an aberrant DNA methylation of transcriptional and inflammatory factors, including TBX21, GATA3, RORγt, FOXP3, IFN-γ, IL-4, IL-17A and TGF-β , in CD4 + T confers risk to BD. We found that the promoter methylation level of GATA3, IL-4 and TGF-β was significantly up-regulated in active BD patients and negatively correlated with the corresponding mRNA expression. The mRNA expression of GATA3 and TGF-β was markedly down-regulated in active BD patients compared to healthy individuals. Treatment with corticosteroids and cyclosporine (CsA) resulted in a decrease of the methylation level of GATA3 and TGF-β in inactive BD patients. Our results suggest that an aberrant DNA methylation of GATA3 and TGF-β is associated with their mRNA expression and participates in the pathogenesis of BD.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom