Cysteinyl leukotriene receptor 1 facilitates tumorigenesis in a mouse model of colitis-associated colon cancer
Author(s) -
Janina Osman,
Sayeh Savari,
Naveenkumar Chandrashekar,
Kishan Bellamkonda,
Desiree Douglas,
Anita Sjölander
Publication year - 2017
Publication title -
oncotarget
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.373
H-Index - 127
ISSN - 1949-2553
DOI - 10.18632/oncotarget.16718
Subject(s) - azoxymethane , colorectal cancer , colitis , medicine , carcinogenesis , intestinal polyp , proinflammatory cytokine , mucin , cancer research , inflammation , gastroenterology , cancer , pathology
Cysteinyl leukotriene receptor 1 (CysLT1R) has been shown to be up-regulated in the adenocarcinomas of colorectal cancer patients, which is associated with a poor prognosis. In a spontaneous model of colon cancer, CysLT1R disruption was associated with a reduced tumor burden in double-mutant female mice (ApcMin/+/Cysltr1-/-) compared to ApcMin/+ littermates. In the current study, we utilized a genetic approach to investigate the effect of CysLT1R in the induced azoxymethane/dextran sulfate sodium (AOM/DSS) model of colitis-associated colon cancer. We found that AOM/DSS female mice with a global disruption of the Cysltr1 gene (Cysltr1-/-) had a higher relative body weight, a more normal weight/length colon ratio and smaller-sized colonic polyps compared to AOM/DSS wild-type counterparts. The Cysltr1-/- colonic polyps exhibited low-grade dysplasia, while wild-type polyps had an adenoma-like phenotype. The Cysltr1-/- colonic polyps exhibited significant decreases in nuclear β-catenin and COX-2 protein expression, while the normal crypts surrounding the polyps exhibited increased Mucin 2 expression. Furthermore, Cysltr1-/- mice exhibited an overall reduction in inflammation, with a significant decrease in proinflammatory cytokines, polyp 5-LOX expression and infiltration of CD45 leukocytes and F4/80 macrophages. In conclusion, the present genetic approach in an AOM/DSS model further supports an important role for CysLT1R in colon tumorigenesis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom