z-logo
open-access-imgOpen Access
MiR-155 promotes epithelial-mesenchymal transition in hepatocellular carcinoma cells through the activation of PI3K/SGK3/β-catenin signaling pathways
Author(s) -
Xin Kong,
F.C. Liu,
Jian Gao
Publication year - 2016
Publication title -
oncotarget
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.373
H-Index - 127
ISSN - 1949-2553
DOI - 10.18632/oncotarget.11800
Subject(s) - pi3k/akt/mtor pathway , protein kinase b , epithelial–mesenchymal transition , cancer research , kinase , phosphorylation , hepatocellular carcinoma , phosphoinositide 3 kinase , medicine , signal transduction , biology , microbiology and biotechnology , cancer , metastasis
Oncogenic mutations in PIK3CA, the gene encoding the catalytic subunit of phosphoinositide 3-kinase (PI3K), occur with high frequency in hepatocellular carcinoma (HCC). The protein kinase Akt is considered to be the primary effector of PI3K, but there is evidence to suggest that serum and glucocorticoid kinase 3 (SGK3) acts in an Akt-independent manner downstream of PI3K. In this report, we found that SGK3 promotes epithelial-mesenchymal transition (EMT) and reduces phosphorylation-dependent degradation of β-catenin in HCC cells. We determined that miR-155, previously shown to promote EMT, stimulates the expression of SGK3 by targeting and repressing P85α, thereby removing its inhibitory effect on PI3K-AKT signaling. These findings suggest that miR-155 promotes EMT and metastatic properties in HCC cells through activation of PI3K/SGK3/β-catenin signaling pathways.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom