Overcoming EMT-driven therapeutic resistance by BH3 mimetics
Author(s) -
Ulrike Keitel,
Christina Scheel,
Matthias Dobbelstein
Publication year - 2014
Publication title -
oncoscience
Language(s) - English
Resource type - Journals
ISSN - 2331-4737
DOI - 10.18632/oncoscience.93
Subject(s) - epithelial–mesenchymal transition , cancer research , cancer , stroma , cancer cell , mechanism (biology) , cancer stem cell , apoptosis , biology , immunology , metastasis , genetics , philosophy , immunohistochemistry , epistemology
Epithelial-mesenchymal transition (EMT) contributes to the progression of cancer through enhanced invasion and stem-like properties of cancer cells. Additionally, EMT confers resistance towards many chemotherapeutics. We recently described a mechanism that mediates EMT-driven chemoresistance through augmented levels of Bcl-xL, an anti-apoptotic member of the Bcl-2 family (Keitel et al., Oncotarget, in press). Here, we elaborate on how these findings pertain to cancer cells dispersed in the tumor-adjacent stroma of breast cancer tissues, and how BH3-mimetics may provide a therapeutic strategy to eliminate cancer cell populations that have passed through an EMT.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom