Resistance to c-Kit inhibitors in melanoma: insights for future therapies
Author(s) -
Matteo S. Carlino,
Jason R. Todd,
Helen Rizos
Publication year - 2014
Publication title -
oncoscience
Language(s) - English
Resource type - Journals
ISSN - 2331-4737
DOI - 10.18632/oncoscience.51
Subject(s) - proto oncogene proteins c kit , melanoma , cancer research , mapk/erk pathway , receptor tyrosine kinase , targeted therapy , pi3k/akt/mtor pathway , kinase , medicine , biology , signal transduction , cancer , stem cell factor , microbiology and biotechnology , stem cell , haematopoiesis
Mutations activating the receptor tyrosine kinase c-Kit occur commonly in melanomas arising on mucosal membranes and acral skin. Clinical studies have demonstrated that selective inhibition of c-Kit is effective in treating patients with c-Kit mutant gastrointestinal stromal tumors, but c-Kit inhibitor activity has been disappointing in c-Kit mutant melanoma patients. Activated c-Kit utilises phosphatidylinositol 3-kinase (PI3K) signalling as the dominant effector of cell proliferation and survival with the mitogen-activated protein kinase (MAPK) cascade serving as an ancillary survival pathway. We confirmed that these pathways are re-activated in melanoma cells with acquired resistance to c-Kit inhibitors and that these resistant sublines remain sensitive to the concurrent inhibition of MAPK and PI3K signalling. These findings suggest that durable responses in c-Kit mutant melanoma may require combination therapies that selectively inhibit critical downstream proliferative and survival pathways. We also discuss the interaction between targeted therapies and anti-tumor immune responses and the need to consider immunotherapies in new combinatorial treatment approaches.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom