z-logo
open-access-imgOpen Access
Epigenetic silencing of S100A2 in bladder and head and neck cancers
Author(s) -
Juna Lee,
Piotr Wysocki,
Özlem Topaloglu,
Leonel Maldonado,
Mariana Brait,
Shahnaz Begum,
David Moon,
Myoung Sook Kim,
Joseph A. Califano,
David Sidransky,
Mohammad Obaidul Hoque,
Chulso Moon
Publication year - 2015
Publication title -
oncoscience
Language(s) - English
Resource type - Journals
ISSN - 2331-4737
DOI - 10.18632/oncoscience.140
Subject(s) - methylation , bladder cancer , dna methylation , epigenetics , cancer research , carcinogenesis , cancer , gene silencing , head and neck cancer , tumor suppressor gene , medicine , biology , gene expression , gene , genetics
S100A2, a member of the S100 protein family, is known to be downregulated in a number of human cancers, leading to its designation as a potential tumor suppressor gene. Here, we investigated the expression and methylation status of S100A2 in head&neck and bladder cancer. Reduced mRNA and protein expression was observed in 8 head&neck and bladder cancer cell lines. To explore the mechanism responsible for the downregulation of S100A2, we treated six cell lines with 5-aza-2'-deoxycytidine. We found S100A2 is silenced in association with aberrant promoter-region methylation and its expression is restored with 5-aza-2'-deoxycytidine treatment. Of 31 primary head&neck cancer cases and 31 bladder cancer cases, promoter methylation was detected in 90% and 80% of cases, respectively. Interestingly, only 1/9 of normal head&neck tissues and 2/6 of normal bladder tissues showed promoter methylation. S100A2 promoter methylation can be detected in urine and is more frequent in bladder cancer patients than in healthy subjects (96% vs 48% respectively). Moreover, increased methylation of S100A2 is linked to the progression of the tumor in bladder cancer (p<0.01). Together, this data shows that methylation-associated inactivation of S100A2 is frequent and may be an important event in the tumorigenesis of head&neck and bladder cancer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom