z-logo
open-access-imgOpen Access
Identification of a novel and potent small molecule inhibitor of SRPK1: mechanism of dual inhibition of SRPK1 for the inhibition of cancer progression
Author(s) -
Anshuman Chandra,
Hanumappa Ananda,
N. Singh,
Imteyaz Qamar
Publication year - 2020
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.202301
Subject(s) - mechanism (biology) , identification (biology) , dual (grammatical number) , cancer , chemistry , computational biology , physics , biology , quantum mechanics , genetics , botany , philosophy , linguistics
Protein kinases are the family of attractive enzyme targets for drug design with relevance to cancer biology. Serine arginine protein kinase 1 (SRPK1) is responsible for the phosphorylation of serine/arginine (SR)-rich proteins. Alternative Splicing Factor/Splicing Factor 2 (ASF/SF2) involved in mRNA editing. ASF/SF2 is over expressed in many cancers and plays crucial roles in the cell survival. Phosphorylation of ASF/SF2 is decisive for its functions in cancer. In search of potential anticancer therapeutic agents for attenuating phosphorylation of ASF/SF2, we have explored specific and potential inhibitors of SRPK1 from natural and drug like compounds databases using in-silico methods. Compound ZINC02154892 (C02) was found to be the most potent inhibitor for SRPK1. In-vitro molecular and cell biology studies have shown C02 as a potent and specific inhibitor of phosphorylation of ASF/SF2 and cell survival in leukemic cell line. Structural analysis of SRPK1 with compound C02 revealed a unique pattern of binding targeting ATP binding site along with inhibiting recruitment of ASF/SF2 by SRPK1. The possibilities of compound C02 to be used as a lead compound paving way for the development of potent and specific inhibitors of SRPK1 for designing of novel potential anticancer inhibitor is inferred from the current studies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom